

Subject: Important notice!
From: Stanford University - enewsforum@stanford.eduDates: Octobor 28, 2011 12:34-16 PM PDT
To: Undicisiosed-recipients;

Greats News!

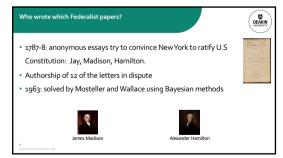
You can now access the latest news by using the link below to login to Stanford University News Forum.
http://www.123contactform.com/contact-form-Stanford/News1-236335.html

Click on the above link to login for more information about this new exciting forum. You can also copy the above link to login to more information about the new services.

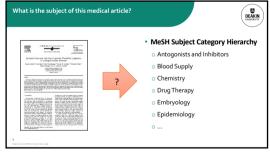
© Stanford University .All Rights Reserved.

3

1 2



4



+ ...zany characters and richly applied satire, and some great plot twists

- It was pathetic. The worst part about it was the boxing scenes...

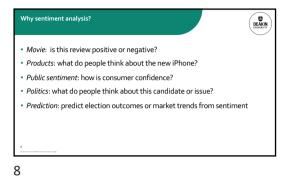
+ ...awesome caramel sauce and sweet toasty almonds. I love this place!

- ...awful pizza and ridiculously overpriced...

5

•

Positive or negative movie review? + ...zany characters and richly applied satire, and some great plot twists - It was pathetic. The worst part about it was the boxing scenes... + ...awesome caramel sauce and sweet toasty almonds. I love this place! - ...awful pizza and ridiculously overpriced...



Emotion: brief organically synchronized ... evaluation of a major event
 orgry; sad, poful, feraful, anharmed, proud, elated
 Mond diffuse non-caused low-intensity long-duration change in subjective feeling
 cheerful, gloomy, imitable, listless, depressed, buoyant
 Interpersonal stances: affective stance toward another person in a specific interaction
 of finerally, filtratious, distant, cold, warm, supportive, contemptuous
 Attitudes: enduring, affectively colored beliefs, dispositions towards objects or persons
 o libing, loving, hatting, valuing desiring
 Personality traits: stable personality dispositions and typical behavior tendencies
 o nervous, anxious, reckless, morose, hostile, jealous

Scherer Typology of Affective States

• Emotion: brief organically synchronized ... evaluation of a major event

• anny, sad, priful, frainful, ashamed, proud, elated

• Mood: diffuse non-caused low-intensity long-duration change in subjective feeling

• cheryful, gloomy, immobe, listless, depressed, busyont

• Interpersonal stances affective stance toward another person in a specific interaction

• friendly, flintatious, distant, cold, warm, supportive, contemptuous

• Attitudes enduring affectively colored beliefs, dispositions towards objects or persons

• liking, loving, hatring, valuing desiring

• Personality traits: stable personality dispositions and typical behavior tendencies

• nervous, anxious, reckless, morose, hostile, jealous

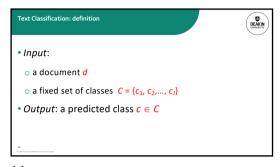
Sentiment Classification

Sentiment analysis is the detection of attitudes
Simple task we focus on in this chapter
Is the attitude of this text positive or negative?
We return to affect classification in later chapters

Summary: Text Classification

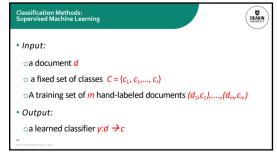
Sentiment analysis
Spam detection
Authorship identification
Language Identification
Assigning subject categories, topics, or genres
...

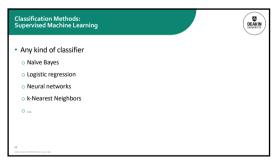
10 11 12



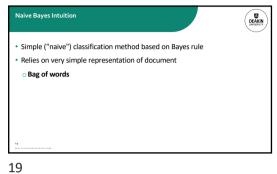
Rules based on combinations of words or other features
spam: black-list-address OR ("dollars" AND "you have been selected")
Accuracy can be high
If rules carefully refined by expert
But building and maintaining these rules is expensive

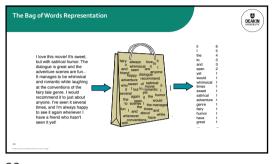
13 14 15

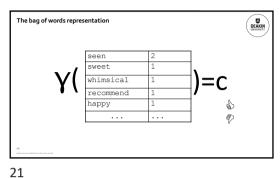




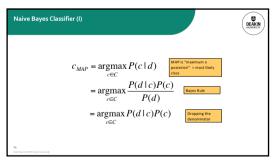
16 17 18

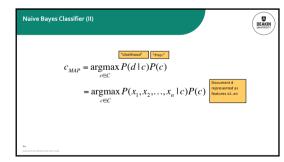




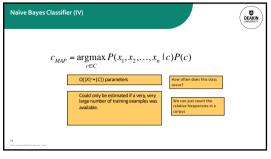


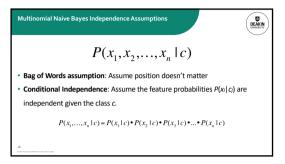
* For a document d and a class c $P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$

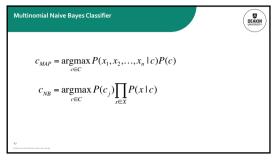




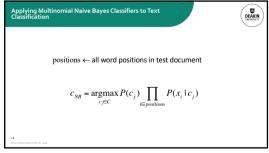
22 23 24



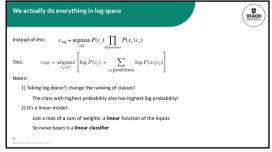




25 26 27



* There's a problem with this: $c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j) \prod_{j \in positions} P(x_i \mid c_j)$ Multiplying lots of probabilities can result in floating-point underflow! .0006 * .0007 * .0009 * .01 * .5 * .00008.... Idea: Use logs, because $\log(ab) = \log(a) + \log(b)$ We'll sum logs of probabilities instead of multiplying probabilities!



28 29 30

32

Parameter estimation $\widehat{P}(w_i | c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V}^{count(w_i, c_j)}} \quad \text{fraction of times word w appears} \\ \text{among all words in documents of topic c_i}$ • Create mega-document for topic \$j\$ by concatenating all docs in this topic

• Use frequency of \$w\$ in mega-document

33

31

34

Problem with Maximum Likelihood

• What if we have seen no training documents with the word fantastic and classified in the topic positive (thumbs-up)? $\hat{P}_{\text{Cfantastic}^*} |_{\text{positive}}) = \frac{count(\text{w.positive})}{\sum_{c=0}^{\infty} count(\text{w.positive})} = 0$ • Zero probabilities cannot be conditioned away, no matter the other evidence! $c_{MAP} = \operatorname{argmax}_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$

Laplace (add-1) smoothing for Naïve Bayes $\hat{P}(w_i \, | \, c) = \frac{count(w_i, c) + 1}{\sum_{w \in V} (count(w, c)) + 1}$ $= \frac{count(w_i, c) + 1}{\left(\sum_{w \in V} count(w, c)\right) + |V|}$

Multinomial Naïve Bayes: Learning

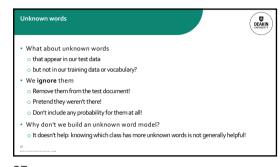
• From training corpus, extract VocabularyCalculate P(e) (erms

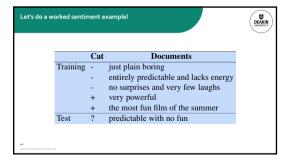
• Calculate $P(w \mid e)$ terms

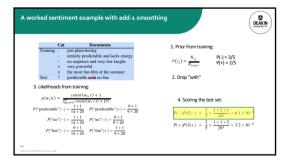
• Text \leftarrow single doc containing all docs)

• For each e in C do $docs \leftarrow$ all docs with class = e0

• For each word w1 in C i





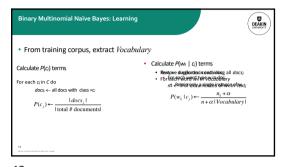


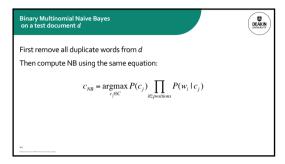
For tasks like sentiment, word occurrence seems to be more important than word frequency.

• The occurrence of the word fantastic tells us a lot
• The fact that it occurs 5 times may not tell us much more.

Binary multinominal naive bayes, or binary NB
• Clip our word counts at 1
• Note: this is different than Bernoulli naive bayes; see the textbook at the end of the chapter.

40 41 42

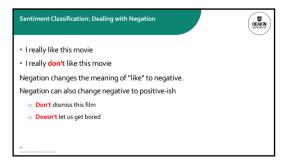




Four original documents:

- it was pathetic the worst part was the boxing scenes
- no plot twists or great scenes
+ and satire and great plot twists
+ great scenes great film

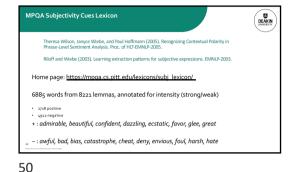
43 44 45

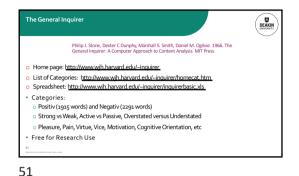


Sentiment Classification: Dealing with Negation

Park holy and the Class 20th What is because through a new analysis and a marge plant. In Park and the Class 20th What is because through a new analysis and the Class 20th What is because through the Class 20th What is because through the Class 20th What is because the Class 20th What is bec

46 47 48



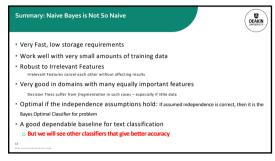


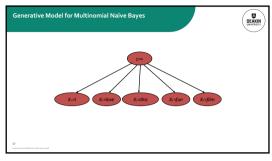
Using Lexicons in Sentiment Classification DEAKIN UNIVERSITY Add a feature that gets a count whenever a word from the lexicon occurs o E.g., a feature called "this word occurs in the positive lexicon" or "this word occurs in the negative lexicon" Now all positive words (good, great, beautiful, wonderful) or negative words count for that feature. Using 1-2 features isn't as good as using all the words. But when training data is sparse or not representative of the test set, dense lexicon features can help

52

Naive Bayes in Other tasks: Spam Filtering DEAKIN LINIVERSITY SpamAssassin Features: o Mentions millions of (dollar) ((dollar) NN,NNN,NNN.NN) o From: starts with many numbers Subject is all capitals o HTML has a low ratio of text to image area o "One hundred percent guaranteed" o Claims you can be removed from the list 53

Naive Bayes in Language ID DEAKIN Determining what language a piece of text is written in. Features based on character n-grams do very well • Important to train on lots of varieties of each language (e.g., American English varieties like African-American English, or English varieties around the world like Indian English)





55 56 57

Naïve Bayes and Language Modeling

Naïve bayes classifiers can use any sort of feature

URL, email address, dictionaries, network features

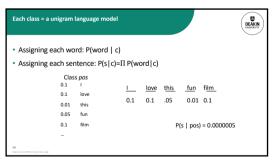
But if, as in the previous slides

We use only word features

we use all of the words in the text (not a subset)

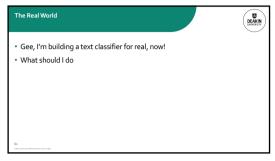
Then

Naïve bayes has an important similarity to language modeling.



DEAKIN UNIVERSITY Naïve Bayes as a Language Model • Which class assigns the higher probability to s? Model pos Model neg 0.2 I 0.1 I love this fun film 0.001 love 0.1 0.01 0.05 0.1 0.001 0.01 0.005 0.1 0.01 this 0.01 this 0.05 fun 0.005 fun P(s|pos) > P(s|neg)0.1 film 0.1 film

58 59 60

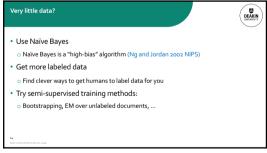


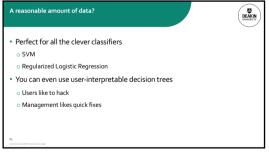
If (wheat or grain) and not (whole or bread) then
Categorize as grain

Need careful crafting

Human tuning on development data
Time-consuming: 2 days per class

61 62 63





A huge amount of data?

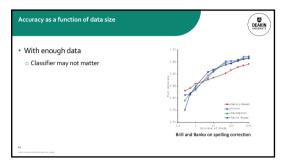
Can achieve high accuracy!

At a cost:

SVMs (train time) or kNN (test time) can be too slow
Regularized logistic regression can be somewhat better

So Naïve Bayes can come back into its own again!

64 65 66



Real-world systems generally combine:

 Automatic classification
 Manual review of uncertain/difficult/"new" cases

Underflow Prevention: log space

• Multiplying lots of probabilities can result in floating-point underflow.

• Since $\log(xy) = \log(x) + \log(y)$ • Better to sum logs of probabilities instead of multiplying probabilities.

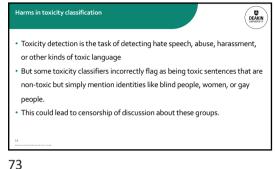
• Class with highest un-normalized log probability score is sill most probable. $c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} \log P(c_j) + \sum_{i \in positions} \log P(x_i \mid c_j)$ • Model is now just max of sum of weights

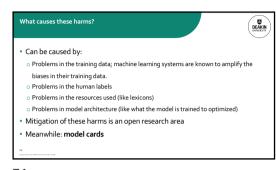
69

67

SIT330-770: Natural Language Processing
Week 5.9 – Avoiding Harms in Classification
Dr. Mehamed Reda Bouadjenek
School of Information Technology,
Faculty of Sci Eng & Built Env

Kiritchenko and Mohammad (2018) found that most sentiment classifiers assign lower sentiment and more negative emotion to sentences with African American names in them.
 This perpetuates negative stereotypes that associate African Americans with negative emotions





(Mitchell et al., 2019)

• For each algorithm you release, document:

• training algorithms and parameters

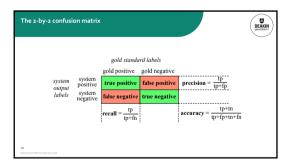
• training data sources, motivation, and preprocessing

• evaluation data sources, motivation, and preprocessing

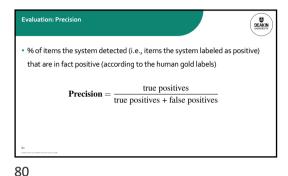
• intended use and users

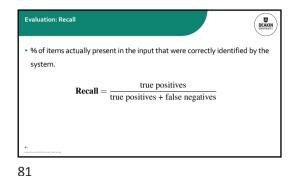
• model performance across different demographic or other groups and environmental situations

3 74 75



76 77 78





82

• Our dumb pie-classifier

• Just label nothing as "about pie"

Accuracy=99.99%

but

Recall = 0

• (it doesn't get any of the 100 Pie tweets)

Precision and recall, unlike accuracy, emphasize true positives:

• finding the things that we are supposed to be looking for.

* F measure: a single number that combines P and R: $F_{\beta} = \frac{(\beta^2+1)PR}{\beta^2P+R}$ * We almost always use balanced F1 (i.e., β = 1) $F_1 = \frac{2PR}{P+R}$

Pevelopment Test Sets ("Devsets") and Cross-validation

Training set

Development Test Set

Test Set

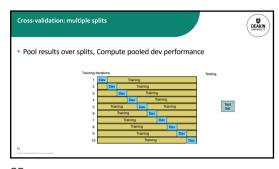
Test Set

Test Set

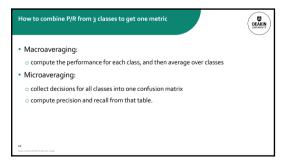
Test Set

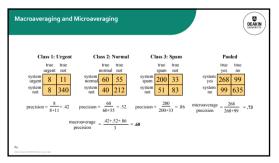
Test Set

But paradox: want as much data as possible for training, and as much for dev; how to split?

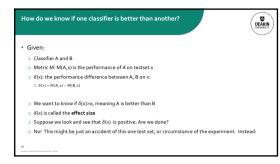


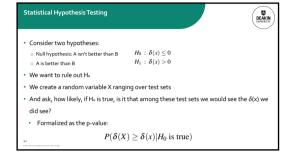
85 86 87





88 89 90

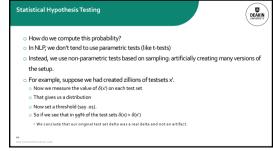




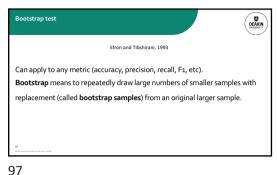
 $P(\delta(X) \geq \delta(x)|H_0 \text{ is true})$ o In our example, this p-value is the probability that we would see $\delta(x)$ assuming H $_0$ (=A is not better than B).
o if H $_0$ is true but $\delta(x)$ is huge, that is surprising! Very low probability!
o A very small p-value means that the difference we observed is very unlikely under the null hypothesis, and we can reject the null hypothesis
o Very small: .o5 or .o1
o A result(e.g., "A is better than B") is **statistically significant** if the δ we saw has a probability that is below the threshold and we therefore reject this null hypothesis.

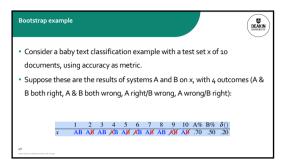
93

91 92



94





Bootstrap example DEAKIN • Now we create, many, say, b=10,000 virtual test sets x(i), each of size n=10. • To make each x(i), we randomly select a cell from row x, with replacement, 1 2 3 4 5 6 7 8 9 10 A% B% δ()

AB AK AB XB AK XB AK XB AK AK AK AR .70 .50 .20 x(1) AB .60 .60 .00 $x^{(2)}$ AB AB AB AB AB AB AB AB .60 .70 -.10

99

98

Bootstrap example DEAKIN UNIVERSITY • Now we have a distribution! We can check how often A has an accidental advantage, to see if the original $\delta(x)$ we saw was very common. • Now assuming H_0 , that means normally we expect $\delta(x')=0$ • So we just count how many times the $\delta(x')$ we found exceeds the expected o value by $\delta(x)$ or more: $\text{p-value}(x) = \sum_{i=1}^{b} \mathbb{1}\left(\delta(x^{(i)}) - \delta(x) \ge 0\right)$

100

Bootstrap example DEAKIN LINIVERSITY · Alas, it's slightly more complicated. · We didn't draw these samples from a distribution with o mean; we created them from the original test set x, which happens to be biased (by .20) in favor of A. • So to measure how surprising is our observed $\delta(x)$, we actually compute the pvalue by counting how often $\delta(x')$ exceeds the expected value of $\delta(x)$ by $\delta(x)$ or $\begin{aligned} \text{p-value}(x) &=& \sum_{i=1}^b \mathbb{I}\left(\delta(x^{(i)}) - \delta(x) \geq \delta(x)\right) \\ &=& \sum_{i=1}^b \mathbb{I}\left(\delta(x^{(i)}) \geq 2\delta(x)\right) \end{aligned}$

Bootstrap example DEAKIN Suppose: We have 10,000 test sets x(i) and a threshold of .01 o And in only 47 of the test sets do we find that $\delta(x(i)) \ge 2\delta(x)$ o The resulting p-value is .0047 \circ This is smaller than .01, indicating δ (x) is indeed sufficiently surprising o And we reject the null hypothesis and conclude A is better than B.

```
Paired bootstrap example

After Berg-Richapatrick et al (2012)

function BOOTSTRAP(test set x, num of samples \delta) returns p\text{-value}(x)

Calculate \delta(x) # how much better does algorithm A do than B on x
s=0

for i=1 to b do

for j=1 to n do # Draw a bootstrap sample x^{(i)} of size n

Select a member of s at random and add it to s^{(i)}

Calculate \delta(x^{(i)}) # how much better does algorithm A do than B on x^{(i)}
s \leftarrow s + 1 if \delta(x^{(i)}) > 2\delta(x)
p\text{-value}(x) \approx \frac{s}{b} # on what \frac{s}{b} of the b samples did algorithm A beat expectations? return p\text{-value}(x) # if very few did, our observed \delta is probably not accidental
```