
3/27/24

1

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of
Sci Eng & Built Env

reda.bouadjenek@deakin.edu.au

SIT330-770: Natural Language
Processing

Week 5 - Naïve Bayes and Sentiment
Classification

1
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 5.1 - The Task of Text Classification

SIT330-770: Natural
Language Processing

2

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

2

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Is this spam?

3

3

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• 1787-8: anonymous essays try to convince New York to ratify U.S

Constitution: Jay, Madison, Hamilton.

• Authorship of 12 of the letters in dispute

• 1963: solved by Mosteller and Wallace using Bayesian methods

Who wrote which Federalist papers?

4

James Madison Alexander Hamilton

4
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

What is the subject of this medical article?

5

• MeSH Subject Category Hierarchy
o Antogonists and Inhibitors

o Blood Supply

o Chemistry

o Drug Therapy

o Embryology

o Epidemiology

o …

?

5

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

...zany characters and richly applied satire, and some great plot

twists

It was pathetic. The worst part about it was the boxing scenes...

...awesome caramel sauce and sweet toasty almonds. I love this

place!

...awful pizza and ridiculously overpriced...

Positive or negative movie review?

6

+

+

−

−

6

mailto:reda.bouadjenek@deakin.edu.au

3/27/24

2

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

...zany characters and richly applied satire, and some great plot

twists

It was pathetic. The worst part about it was the boxing scenes...

...awesome caramel sauce and sweet toasty almonds. I love this

place!

...awful pizza and ridiculously overpriced...

Positive or negative movie review?

7

+

+

−

−

7
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Movie: is this review positive or negative?

• Products: what do people think about the new iPhone?

• Public sentiment: how is consumer confidence?

• Politics: what do people think about this candidate or issue?

• Prediction: predict election outcomes or market trends from sentiment

Why sentiment analysis?

8

8

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Emotion: brief organically synchronized … evaluation of a major event

o angry, sad, joyful, fearful, ashamed, proud, elated

• Mood: diffuse non-caused low-intensity long-duration change in subjective feeling

o cheerful, gloomy, irritable, listless, depressed, buoyant

• Interpersonal stances: affective stance toward another person in a specific interaction

o friendly, flirtatious, distant, cold, warm, supportive, contemptuous

• Attitudes: enduring, affectively colored beliefs, dispositions towards objects or persons

o liking, loving, hating, valuing, desiring

• Personality traits: stable personality dispositions and typical behavior tendencies

o nervous, anxious, reckless, morose, hostile, jealous

Scherer Typology of Affective States

9

9

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Emotion: brief organically synchronized … evaluation of a major event

o angry, sad, joyful, fearful, ashamed, proud, elated

• Mood: diffuse non-caused low-intensity long-duration change in subjective feeling

o cheerful, gloomy, irritable, listless, depressed, buoyant

• Interpersonal stances: affective stance toward another person in a specific interaction

o friendly, flirtatious, distant, cold, warm, supportive, contemptuous

• Attitudes: enduring, affectively colored beliefs, dispositions towards objects or persons

o liking, loving, hating, valuing, desiring

• Personality traits: stable personality dispositions and typical behavior tendencies

o nervous, anxious, reckless, morose, hostile, jealous

Scherer Typology of Affective States

10

10
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Sentiment analysis is the detection of attitudes

• Simple task we focus on in this chapter

o Is the attitude of this text positive or negative?

• We return to affect classification in later chapters

Basic Sentiment Classification

11

11

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Sentiment analysis

• Spam detection

• Authorship identification

• Language Identification

• Assigning subject categories, topics, or genres

• …

Summary: Text Classification

12

12

3/27/24

3

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 5.2 - The Text Classification
Problem

SIT330-770: Natural
Language Processing

13

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

13
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Input:

o a document d

o a fixed set of classes C = {c1, c2,…, cJ}

• Output: a predicted class c Î C

Text Classification: definition

14

14

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Rules based on combinations of words or other features
o spam: black-list-address OR (“dollars” AND “you have been selected”)

• Accuracy can be high

o If rules carefully refined by expert

• But building and maintaining these rules is expensive

Classification Methods: Hand-coded rules

15

15

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Input:

oa document d

o a fixed set of classes C = {c1, c2,…, cJ}

oA training set of m hand-labeled documents (d1,c1),....,(dm,cm)

• Output:

oa learned classifier γ:d à c

Classification Methods:
Supervised Machine Learning

16

16
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Any kind of classifier
o Naïve Bayes

o Logistic regression

o Neural networks

o k-Nearest Neighbors

o …

Classification Methods:
Supervised Machine Learning

17

17

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 5.3 - The Naive Bayes Classifier

SIT330-770: Natural
Language Processing

18

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

18

3/27/24

4

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Simple ("naive") classification method based on Bayes rule

• Relies on very simple representation of document

oBag of words

Naive Bayes Intuition

19

19
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

The Bag of Words Representation

20

it

it

it
it

it

it

I

I

I

I

I

love

recommend

movie

the
the

the

the

to

to

to

and

andand

seen

seen

yet

would

with

who

whimsical

whilewhenever

times

sweet

several

scenes

satirical

romantic
of

manages

humor

have

happy

fun

friend

fairy

dialogue

but

conventions

are
anyone

adventure

always

again

about

I love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. I would
recommend it to just about
anyone. I've seen it several
times, and I'm always happy
to see it again whenever I
have a friend who hasn't
seen it yet!

it
I
the
to
and
seen
yet
would
whimsical
times
sweet
satirical
adventure
genre
fairy
humor
have
great
…

6
5
4
3
3
2
1
1
1
1
1
1
1
1
1
1
1
1
…

it

it

it
it

it

it

I

I

I

I

I

love

recommend

movie

the
the

the

the

to

to

to

and

andand

seen

seen

yet

would

with

who

whimsical

whilewhenever

times

sweet

several

scenes

satirical

romantic
of

manages

humor

have

happy

fun

friend

fairy

dialogue

but

conventions

are
anyone

adventure

always

again

about

I love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. I would
recommend it to just about
anyone. I've seen it several
times, and I'm always happy
to see it again whenever I
have a friend who hasn't
seen it yet!

it
I
the
to
and
seen
yet
would
whimsical
times
sweet
satirical
adventure
genre
fairy
humor
have
great
…

6
5
4
3
3
2
1
1
1
1
1
1
1
1
1
1
1
1
…

it

it

it
it

it

it

I

I

I

I

I

love

recommend

movie

the
the

the

the

to

to

to

and

andand

seen

seen

yet

would

with

who

whimsical

whilewhenever

times

sweet

several

scenes

satirical

romantic
of

manages

humor

have

happy

fun

friend

fairy

dialogue

but

conventions

are
anyone

adventure

always

again

about

I love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. I would
recommend it to just about
anyone. I've seen it several
times, and I'm always happy
to see it again whenever I
have a friend who hasn't
seen it yet!

it
I
the
to
and
seen
yet
would
whimsical
times
sweet
satirical
adventure
genre
fairy
humor
have
great
…

6
5
4
3
3
2
1
1
1
1
1
1
1
1
1
1
1
1
…

20

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

The bag of words representation

21

γ()=c
seen 2
sweet 1

whimsical 1

recommend 1
happy 1

... ...

21

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• For a document d and a class c

Bayes’ Rule Applied to Documents and Classes

22

P(c | d) = P(d | c)P(c)
P(d)

22
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Naive Bayes Classifier (I)

23

cMAP = argmax
c∈C

P(c | d)

= argmax
c∈C

P(d | c)P(c)
P(d)

= argmax
c∈C

P(d | c)P(c)

MAP is “maximum a
posteriori” = most likely
class

Bayes Rule

Dropping the
denominator

23

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Naive Bayes Classifier (II)

24

cMAP = argmax
c∈C

P(d | c)P(c)
Document d
represented as
features x1..xn= argmax

c∈C
P(x1, x2,…, xn | c)P(c)

"Likelihood" "Prior"

24

3/27/24

5

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Naïve Bayes Classifier (IV)

25

How often does this class
occur?

cMAP = argmax
c∈C

P(x1, x2,…, xn | c)P(c)

O(|X|n•|C|) parameters

We can just count the
relative frequencies in a
corpus

Could only be estimated if a very, very
large number of training examples was
available.

25
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Bag of Words assumption: Assume position doesn’t matter

• Conditional Independence: Assume the feature probabilities P(xi|cj) are

independent given the class c.

Multinomial Naive Bayes Independence Assumptions

26

P(x1, x2,…, xn | c)

P(x1,…, xn | c) = P(x1 | c)•P(x2 | c)•P(x3 | c)•...•P(xn | c)

26

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Multinomial Naive Bayes Classifier

27

cMAP = argmax
c∈C

P(x1, x2,…, xn | c)P(c)

cNB = argmax
c∈C

P(cj) P(x | c)
x∈X
∏

27

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Applying Multinomial Naive Bayes Classifiers to Text
Classification

28

cNB = argmax
c j∈C

P(cj) P(xi | cj)
i∈positions
∏

positions ¬ all word positions in test document

28
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• There's a problem with this:

Multiplying lots of probabilities can result in floating-point underflow!

 .0006 * .0007 * .0009 * .01 * .5 * .000008….

Idea: Use logs, because log(ab) = log(a) + log(b)

 We'll sum logs of probabilities instead of multiplying probabilities!

Problems with multiplying lots of probs

29

cNB = argmax
c j∈C

P(cj) P(xi | cj)
i∈positions
∏

29

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Instead of this:

This:

Notes:

1) Taking log doesn't change the ranking of classes!

 The class with highest probability also has highest log probability!

2) It's a linear model:

 Just a max of a sum of weights: a linear function of the inputs

 So naive bayes is a linear classifier

We actually do everything in log space

30

<latexit sha1_base64="o0LQfSf3I3G0xas3oLJOwQZR0GU=">AAACoXicbVFdaxQxFM2MH63r16qPggQXoSIsMwWxL0JpfdAHyypuW5gMQyZ7ZzZ2koxJRnaJ+V/+Dt/8N2Z2R6itF0IO597Dvffcsm24sUnyO4pv3Lx1e2f3zujuvfsPHo4fPT41qtMM5kw1Sp+X1EDDJcwttw2ctxqoKBs4Ky+O+/zZd9CGK/nFrlvIBa0lrzijNlDF+CdZQEWorgVdOSKoXarWES3wlvJ+REqouXTwTVKt6dqPWOGIhZV1J0fe47d4UBeOFV8Jl/jYY9JAZbPwqRrP9gL/Er/CxHSicLwvCZ1KtXKtMrwfw3jv/xavCv6jFxDN66XNMZFKdqIETUAuLk1RjCfJNNkEvg7SAUzQELNi/IssFOsESMsaakyWJq3NHdWWswbCnp2BlrILWkMWoKQCTO42Dnv8IjALXCkdnrR4w15WOCqMWYsyVPYemqu5nvxfLutsdZA7LtvOgmTbRlXXYKtwfy684BqYbdYBUKaDWwyzJdWU2XDU3oT06srXwen+NH09TT7tTw6PBjt20VP0HO2hFL1Bh+g9mqE5YtGz6F30MTqJJ/GHeBZ/3pbG0aB5gv6JOPsD0yvRAA==</latexit>

cNB = argmax
cj2C

2

4logP (cj) +
X

i2positions

logP (xi|cj)

3

5

cNB = argmax
c j∈C

P(cj) P(xi | cj)
i∈positions
∏

30

3/27/24

6

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 5.4 - Naive Bayes: Learning

SIT330-770: Natural
Language Processing

31

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

31
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• First attempt: maximum likelihood estimates
osimply use the frequencies in the data

Learning the Multinomial Naive Bayes Model

32

P̂(wi | cj) =
count(wi,cj)
count(w,cj)

w∈V
∑

!𝑃 𝑐! =
𝑁"#
𝑁$%$&'

32

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Create mega-document for topic j by concatenating all docs in this topic

o Use frequency of w in mega-document

Parameter estimation

33

fraction of times word wi appears
among all words in documents of topic cj

P̂(wi | cj) =
count(wi,cj)
count(w,cj)

w∈V
∑

33

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• What if we have seen no training documents with the word fantastic and classified in the

topic positive (thumbs-up)?

• Zero probabilities cannot be conditioned away, no matter the other evidence!

Problem with Maximum Likelihood

34

P̂("fantastic" positive) = count("fantastic", positive)
count(w, positive

w∈V
∑)

 = 0

cMAP = argmaxc P̂(c) P̂(xi | c)i∏

34
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Laplace (add-1) smoothing for Naïve Bayes

35

=
count(wi,c)+1

count(w,c
w∈V
∑)

#

$
%%

&

'
((+ V

P̂(wi | c) =
count(wi,c)
count(w,c)()

w∈V
∑

P̂(wi | c) =
count(wi,c)+1
count(w,c)+1()

w∈V
∑

35

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Multinomial Naïve Bayes: Learning

36

Calculate P(cj) terms

• For each cj in C do
 docsj ¬ all docs with class =cj

P(wk | cj)←
nk +α

n+α |Vocabulary |

P(cj)←
| docsj |

| total # documents|

• Calculate P(wk | cj) terms

• Textj ¬ single doc containing all docsj

• For each word wk in Vocabulary

 nk ¬ # of occurrences of wk in Textj

• From training corpus, extract Vocabulary

36

3/27/24

7

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• What about unknown words

o that appear in our test data

o but not in our training data or vocabulary?

• We ignore them

o Remove them from the test document!

o Pretend they weren't there!

o Don't include any probability for them at all!

• Why don't we build an unknown word model?

o It doesn't help: knowing which class has more unknown words is not generally helpful!

Unknown words

37

37
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Some systems ignore stop words
o Stop words: very frequent words like the and a.

o Sort the vocabulary by word frequency in training set

oCall the top 10 or 50 words the stopword list.

oRemove all stop words from both training and test sets

• As if they were never there!

• But removing stop words doesn't usually help

• So in practice most NB algorithms use all words and don't use stopword lists

Stop words

38

38

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 5.5 - Sentiment and Binary Naive
Bayes

SIT330-770: Natural
Language Processing

39

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

39

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Let's do a worked sentiment example!

40

4.3 • WORKED EXAMPLE 7

4.3 Worked example

Let’s walk through an example of training and testing naive Bayes with add-one
smoothing. We’ll use a sentiment analysis domain with the two classes positive
(+) and negative (-), and take the following miniature training and test documents
simplified from actual movie reviews.

Cat Documents
Training - just plain boring

- entirely predictable and lacks energy
- no surprises and very few laughs
+ very powerful
+ the most fun film of the summer

Test ? predictable with no fun

The prior P(c) for the two classes is computed via Eq. 4.11 as Nc
Ndoc

:

P(�) =
3
5

P(+) =
2
5

The word with doesn’t occur in the training set, so we drop it completely (as
mentioned above, we don’t use unknown word models for naive Bayes). The like-
lihoods from the training set for the remaining three words “predictable”, “no”, and
“fun”, are as follows, from Eq. 4.14 (computing the probabilities for the remainder
of the words in the training set is left as an exercise for the reader):

P(“predictable”|�) =
1+1

14+20
P(“predictable”|+) =

0+1
9+20

P(“no”|�) =
1+1

14+20
P(“no”|+) =

0+1
9+20

P(“fun”|�) =
0+1

14+20
P(“fun”|+) =

1+1
9+20

For the test sentence S = “predictable with no fun”, after removing the word ‘with’,
the chosen class, via Eq. 4.9, is therefore computed as follows:

P(�)P(S|�) =
3
5
⇥ 2⇥2⇥1

343 = 6.1⇥10�5

P(+)P(S|+) =
2
5
⇥ 1⇥1⇥2

293 = 3.2⇥10�5

The model thus predicts the class negative for the test sentence.

4.4 Optimizing for Sentiment Analysis

While standard naive Bayes text classification can work well for sentiment analysis,
some small changes are generally employed that improve performance.

First, for sentiment classification and a number of other text classification tasks,
whether a word occurs or not seems to matter more than its frequency. Thus it
often improves performance to clip the word counts in each document at 1 (see
the end of the chapter for pointers to these results). This variant is called binary

40
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

A worked sentiment example with add-1 smoothing

41

4.3 • WORKED EXAMPLE 7

4.3 Worked example

Let’s walk through an example of training and testing naive Bayes with add-one
smoothing. We’ll use a sentiment analysis domain with the two classes positive
(+) and negative (-), and take the following miniature training and test documents
simplified from actual movie reviews.

Cat Documents
Training - just plain boring

- entirely predictable and lacks energy
- no surprises and very few laughs
+ very powerful
+ the most fun film of the summer

Test ? predictable with no fun

The prior P(c) for the two classes is computed via Eq. 4.11 as Nc
Ndoc

:

P(�) =
3
5

P(+) =
2
5

The word with doesn’t occur in the training set, so we drop it completely (as
mentioned above, we don’t use unknown word models for naive Bayes). The like-
lihoods from the training set for the remaining three words “predictable”, “no”, and
“fun”, are as follows, from Eq. 4.14 (computing the probabilities for the remainder
of the words in the training set is left as an exercise for the reader):

P(“predictable”|�) =
1+1

14+20
P(“predictable”|+) =

0+1
9+20

P(“no”|�) =
1+1

14+20
P(“no”|+) =

0+1
9+20

P(“fun”|�) =
0+1

14+20
P(“fun”|+) =

1+1
9+20

For the test sentence S = “predictable with no fun”, after removing the word ‘with’,
the chosen class, via Eq. 4.9, is therefore computed as follows:

P(�)P(S|�) =
3
5
⇥ 2⇥2⇥1

343 = 6.1⇥10�5

P(+)P(S|+) =
2
5
⇥ 1⇥1⇥2

293 = 3.2⇥10�5

The model thus predicts the class negative for the test sentence.

4.4 Optimizing for Sentiment Analysis

While standard naive Bayes text classification can work well for sentiment analysis,
some small changes are generally employed that improve performance.

First, for sentiment classification and a number of other text classification tasks,
whether a word occurs or not seems to matter more than its frequency. Thus it
often improves performance to clip the word counts in each document at 1 (see
the end of the chapter for pointers to these results). This variant is called binary

1. Prior from training:

P(-) = 3/5
P(+) = 2/5

2. Drop "with"

4.3 • WORKED EXAMPLE 7

4.3 Worked example

Let’s walk through an example of training and testing naive Bayes with add-one
smoothing. We’ll use a sentiment analysis domain with the two classes positive
(+) and negative (-), and take the following miniature training and test documents
simplified from actual movie reviews.

Cat Documents
Training - just plain boring

- entirely predictable and lacks energy
- no surprises and very few laughs
+ very powerful
+ the most fun film of the summer

Test ? predictable with no fun

The prior P(c) for the two classes is computed via Eq. 4.11 as Nc
Ndoc

:

P(�) =
3
5

P(+) =
2
5

The word with doesn’t occur in the training set, so we drop it completely (as
mentioned above, we don’t use unknown word models for naive Bayes). The like-
lihoods from the training set for the remaining three words “predictable”, “no”, and
“fun”, are as follows, from Eq. 4.14 (computing the probabilities for the remainder
of the words in the training set is left as an exercise for the reader):

P(“predictable”|�) =
1+1

14+20
P(“predictable”|+) =

0+1
9+20

P(“no”|�) =
1+1

14+20
P(“no”|+) =

0+1
9+20

P(“fun”|�) =
0+1

14+20
P(“fun”|+) =

1+1
9+20

For the test sentence S = “predictable with no fun”, after removing the word ‘with’,
the chosen class, via Eq. 4.9, is therefore computed as follows:

P(�)P(S|�) =
3
5
⇥ 2⇥2⇥1

343 = 6.1⇥10�5

P(+)P(S|+) =
2
5
⇥ 1⇥1⇥2

293 = 3.2⇥10�5

The model thus predicts the class negative for the test sentence.

4.4 Optimizing for Sentiment Analysis

While standard naive Bayes text classification can work well for sentiment analysis,
some small changes are generally employed that improve performance.

First, for sentiment classification and a number of other text classification tasks,
whether a word occurs or not seems to matter more than its frequency. Thus it
often improves performance to clip the word counts in each document at 1 (see
the end of the chapter for pointers to these results). This variant is called binary

4.3 • WORKED EXAMPLE 7

4.3 Worked example

Let’s walk through an example of training and testing naive Bayes with add-one
smoothing. We’ll use a sentiment analysis domain with the two classes positive
(+) and negative (-), and take the following miniature training and test documents
simplified from actual movie reviews.

Cat Documents
Training - just plain boring

- entirely predictable and lacks energy
- no surprises and very few laughs
+ very powerful
+ the most fun film of the summer

Test ? predictable with no fun

The prior P(c) for the two classes is computed via Eq. 4.11 as Nc
Ndoc

:

P(�) =
3
5

P(+) =
2
5

The word with doesn’t occur in the training set, so we drop it completely (as
mentioned above, we don’t use unknown word models for naive Bayes). The like-
lihoods from the training set for the remaining three words “predictable”, “no”, and
“fun”, are as follows, from Eq. 4.14 (computing the probabilities for the remainder
of the words in the training set is left as an exercise for the reader):

P(“predictable”|�) =
1+1

14+20
P(“predictable”|+) =

0+1
9+20

P(“no”|�) =
1+1

14+20
P(“no”|+) =

0+1
9+20

P(“fun”|�) =
0+1

14+20
P(“fun”|+) =

1+1
9+20

For the test sentence S = “predictable with no fun”, after removing the word ‘with’,
the chosen class, via Eq. 4.9, is therefore computed as follows:

P(�)P(S|�) =
3
5
⇥ 2⇥2⇥1

343 = 6.1⇥10�5

P(+)P(S|+) =
2
5
⇥ 1⇥1⇥2

293 = 3.2⇥10�5

The model thus predicts the class negative for the test sentence.

4.4 Optimizing for Sentiment Analysis

While standard naive Bayes text classification can work well for sentiment analysis,
some small changes are generally employed that improve performance.

First, for sentiment classification and a number of other text classification tasks,
whether a word occurs or not seems to matter more than its frequency. Thus it
often improves performance to clip the word counts in each document at 1 (see
the end of the chapter for pointers to these results). This variant is called binary

3. Likelihoods from training:

4. Scoring the test set:𝑝 𝑤! 𝑐 =
𝑐𝑜𝑢𝑛𝑡 𝑤! , 𝑐 + 1

∑"∈$ 𝑐𝑜𝑢𝑛𝑡 𝑤, 𝑐 + |𝑉|

𝑃 𝑐% =
𝑁&'
𝑁()(*+

41

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

For tasks like sentiment, word occurrence seems to be more important than

word frequency.
oThe occurrence of the word fantastic tells us a lot

oThe fact that it occurs 5 times may not tell us much more.

Binary multinominal naive bayes, or binary NB

o Clip our word counts at 1

o Note: this is different than Bernoulli naive bayes; see the textbook at the end of the

chapter.

Optimizing for sentiment analysis

42

42

3/27/24

8

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• From training corpus, extract Vocabulary

Binary Multinomial Naïve Bayes: Learning

43

Calculate P(cj) terms

For each cj in C do
 docsj ¬ all docs with class =cj

P(wk | cj)←
nk +α

n+α |Vocabulary |

• Textj ¬ single doc containing all docsj

• For each word wk in Vocabulary
 nk ¬ # of occurrences of wk in Textj

• Calculate P(wk | cj) terms
• Remove duplicates in each doc:
• For each word type w in docj
• Retain only a single instance of w

P(cj)←
| docsj |

| total # documents|

43
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

First remove all duplicate words from d

Then compute NB using the same equation:

Binary Multinomial Naive Bayes
 on a test document d

44

cNB = argmax
c j∈C

P(cj) P(wi | cj)
i∈positions
∏

44

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Binary multinominal naive Bayes

45

8 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

multinomial naive Bayes or binary NB. The variant uses the same Eq. 4.10 exceptbinary NB

that for each document we remove all duplicate words before concatenating them
into the single big document. Fig. 4.3 shows an example in which a set of four
documents (shortened and text-normalized for this example) are remapped to binary,
with the modified counts shown in the table on the right. The example is worked
without add-1 smoothing to make the differences clearer. Note that the results counts
need not be 1; the word great has a count of 2 even for Binary NB, because it appears
in multiple documents.

Four original documents:
� it was pathetic the worst part was the

boxing scenes
� no plot twists or great scenes
+ and satire and great plot twists
+ great scenes great film

After per-document binarization:
� it was pathetic the worst part boxing

scenes
� no plot twists or great scenes
+ and satire great plot twists
+ great scenes film

NB Binary
Counts Counts
+ � + �

and 2 0 1 0
boxing 0 1 0 1
film 1 0 1 0
great 3 1 2 1
it 0 1 0 1
no 0 1 0 1
or 0 1 0 1
part 0 1 0 1
pathetic 0 1 0 1
plot 1 1 1 1
satire 1 0 1 0
scenes 1 2 1 2
the 0 2 0 1
twists 1 1 1 1
was 0 2 0 1
worst 0 1 0 1

Figure 4.3 An example of binarization for the binary naive Bayes algorithm.

A second important addition commonly made when doing text classification for
sentiment is to deal with negation. Consider the difference between I really like this
movie (positive) and I didn’t like this movie (negative). The negation expressed by
didn’t completely alters the inferences we draw from the predicate like. Similarly,
negation can modify a negative word to produce a positive review (don’t dismiss this
film, doesn’t let us get bored).

A very simple baseline that is commonly used in sentiment analysis to deal with
negation is the following: during text normalization, prepend the prefix NOT to
every word after a token of logical negation (n’t, not, no, never) until the next punc-
tuation mark. Thus the phrase

didn’t like this movie , but I

becomes

didn’t NOT_like NOT_this NOT_movie , but I

Newly formed ‘words’ like NOT like, NOT recommend will thus occur more of-
ten in negative document and act as cues for negative sentiment, while words like
NOT bored, NOT dismiss will acquire positive associations. We will return in Chap-
ter 16 to the use of parsing to deal more accurately with the scope relationship be-
tween these negation words and the predicates they modify, but this simple baseline
works quite well in practice.

Finally, in some situations we might have insufficient labeled training data to
train accurate naive Bayes classifiers using all words in the training set to estimate
positive and negative sentiment. In such cases we can instead derive the positive

Counts can still be 2! Binarization is within-doc!

45

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 5.6 - More on Sentiment
Classification

SIT330-770: Natural
Language Processing

46

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

46
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• I really like this movie

• I really don't like this movie

Negation changes the meaning of "like" to negative.

Negation can also change negative to positive-ish

o Don't dismiss this film

o Doesn't let us get bored

Sentiment Classification: Dealing with Negation

47

47

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Sentiment Classification: Dealing with Negation

48

Simple baseline method:

Add NOT_ to every word between negation and following
punctuation:

didn’t like this movie , but I

didn’t NOT_like NOT_this NOT_movie but I

D a s, Sa n jiv a n d M ike C h e n . 2 0 0 1 . Ya h o o ! fo r A m a zo n : E xtra ctin g m a rke t se ntim e nt fro m sto ck m e ssa ge b o a rd s. In
P ro ce e d in gs o f th e A s ia Pa c ific F in a n ce A sso c iatio n A n n u a l C o nfe re n ce (A P FA).
Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? Sentiment Classification using Machine Learning
Techniques. EMNLP-2002, 79— 86.

48

3/27/24

9

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Sometimes we don't have enough labeled training data

• In that case, we can make use of pre-built word lists

• Called lexicons

• There are various publically available lexicons

Sentiment Classification: Lexicons

49

49
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

MPQA Subjectivity Cues Lexicon

50

Home page: https://mpqa.cs.pitt.edu/lexicons/subj_lexicon/

6885 words from 8221 lemmas, annotated for intensity (strong/weak)

• 2718 positive

• 4912 negative

+ : admirable, beautiful, confident, dazzling, ecstatic, favor, glee, great

− : awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann (2005). Recognizing Contextual Polarity in
Phrase-Level Sentiment Analysis. Proc. of HLT-EMNLP-2005.

Riloff and Wiebe (2003). Learning extraction patterns for subjective expressions. EMNLP-2003.

50

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

o Home page: http://www.wjh.harvard.edu/~inquirer

o List of Categories: http://www.wjh.harvard.edu/~inquirer/homecat.htm
o Spreadsheet: http://www.wjh.harvard.edu/~inquirer/inquirerbasic.xls

• Categories:
o Positiv (1915 words) and Negativ (2291 words)
o Strong vs Weak, Active vs Passive, Overstated versus Understated

o Pleasure, Pain, Virtue, Vice, Motivation, Cognitive Orientation, etc

• Free for Research Use

The General Inquirer

51

Philip J. Stone, Dexter C Dunphy, Marshall S. Smith, Daniel M. Ogilvie. 1966. The
General Inquirer: A Computer Approach to Content Analysis. MIT Press

51

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Add a feature that gets a count whenever a word from the lexicon occurs
o E.g., a feature called "this word occurs in the positive lexicon" or "this word occurs in

the negative lexicon"

Now all positive words (good, great, beautiful, wonderful) or negative words

count for that feature.

Using 1-2 features isn't as good as using all the words.
• But when training data is sparse or not representative of the test set, dense lexicon

features can help

Using Lexicons in Sentiment Classification

52

52
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• SpamAssassin Features:
o Mentions millions of (dollar) ((dollar) NN,NNN,NNN.NN)

o From: starts with many numbers

o Subject is all capitals

o HTML has a low ratio of text to image area

o "One hundred percent guaranteed"

o Claims you can be removed from the list

Naive Bayes in Other tasks: Spam Filtering

53

53

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Determining what language a piece of text is written in.

Features based on character n-grams do very well

• Important to train on lots of varieties of each language

(e.g., American English varieties like African-American English, or English varieties

around the world like Indian English)

Naive Bayes in Language ID

54

54

https://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
http://www.wjh.harvard.edu/~inquirer
http://www.wjh.harvard.edu/~inquirer/homecat.htm
http://www.wjh.harvard.edu/~inquirer/inquirerbasic.xls

3/27/24

10

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Very Fast, low storage requirements

• Work well with very small amounts of training data

• Robust to Irrelevant Features
 Irrelevant Features cancel each other w ithout affecting results

• Very good in domains with many equally important features
 Decision Trees suffer from fragm entation in such cases – especially if little data

• Optimal if the independence assumptions hold: If assumed independence is correct, then it is the

Bayes Optimal Classifier for problem

• A good dependable baseline for text classification
o But we will see other classifiers that give better accuracy

Summary: Naive Bayes is Not So Naive

55

55
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 5.7 - Naïve Bayes: Relationship to
Language Modeling

SIT330-770: Natural
Language Processing

56

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

56

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Generative Model for Multinomial Naïve Bayes

57

c=+

X1=I X2=love X3=this X4=fun X5=film

57

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Naïve bayes classifiers can use any sort of feature

o URL, email address, dictionaries, network features

• But if, as in the previous slides

o We use only word features

o we use all of the words in the text (not a subset)

• Then

o Naive bayes has an important similarity to language modeling.

Naïve Bayes and Language Modeling

58

58
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Assigning each word: P(word | c)

• Assigning each sentence: P(s|c)=Π P(word|c)

Each class = a unigram language model

59

0.1 I

0.1 love

0.01 this

0.05 fun

0.1 film

…

I love this fun film

0.1 0.1 .05 0.01 0.1

Class pos

P(s | pos) = 0.0000005

59

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Which class assigns the higher probability to s?

Naïve Bayes as a Language Model

60

0.1 I

0.1 love

0.01 this

0.05 fun

0.1 film

Model pos Model neg

filmlove this funI

0.10.1 0.01 0.050.1
0.10.001 0.01 0.0050.2

P(s|pos) > P(s|neg)

0.2 I

0.001 love

0.01 this

0.005 fun

0.1 film

60

3/27/24

11

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 5.8 – Text Classification: Practical
Issues

SIT330-770: Natural
Language Processing

61

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

61
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Gee, I’m building a text classifier for real, now!

• What should I do

The Real World

62

62

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

If (wheat or grain) and not (whole or bread) then

 Categorize as grain

• Need careful crafting

o Human tuning on development data

o Time-consuming: 2 days per class

No training data? Manually written rules

63

63

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Use Naïve Bayes

o Naïve Bayes is a “high-bias” algorithm (Ng and Jordan 2002 NIPS)

• Get more labeled data

o Find clever ways to get humans to label data for you

• Try semi-supervised training methods:
o Bootstrapping, EM over unlabeled documents, …

Very little data?

64

64
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Perfect for all the clever classifiers
o SVM

o Regularized Logistic Regression

• You can even use user-interpretable decision trees

o Users like to hack

o Management likes quick fixes

A reasonable amount of data?

65

65

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Can achieve high accuracy!

• At a cost:

o SVMs (train time) or kNN (test time) can be too slow

o Regularized logistic regression can be somewhat better

• So Naïve Bayes can come back into its own again!

A huge amount of data?

66

66

3/27/24

12

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• With enough data

o Classifier may not matter

Accuracy as a function of data size

67

67
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Automatic classification

• Manual review of uncertain/difficult/"new” cases

Real-world systems generally combine:

68

68

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Multiplying lots of probabilities can result in floating-point underflow.

• Since log(xy) = log(x) + log(y)

o Better to sum logs of probabilities instead of multiplying probabilities.

• Class with highest un-normalized log probability score is sill most probable.

• Model is now just max of sum of weights

Underflow Prevention: log space

69

69

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Domain-specific features and weights: very important in real performance

• Sometimes need to collapse terms:

o Part numbers, chemical formulas, …

o But stemming generally doesn’t help

• Upweighting: Counting a word as if it occurred twice:
o title words (Cohen & Singer 1996)

o first sentence of each paragraph (Murata, 1999)

o In sentences that contain title words (Ko et al, 2002)

How to tweak performance

70

70
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 5.9 – Avoiding Harms in
Classification

SIT330-770: Natural
Language Processing

71

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

71

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Kiritchenko and Mohammad (2018) found that most sentiment classifiers

assign lower sentiment and more negative emotion to sentences with

African American names in them.

• This perpetuates negative stereotypes that associate African Americans with

negative emotions

Harms in sentiment classifiers

72

72

3/27/24

13

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Toxicity detection is the task of detecting hate speech, abuse, harassment,

or other kinds of toxic language

• But some toxicity classifiers incorrectly flag as being toxic sentences that are

non-toxic but simply mention identities like blind people, women, or gay

people.

• This could lead to censorship of discussion about these groups.

Harms in toxicity classification

73

73
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Can be caused by:
o Problems in the training data; machine learning systems are known to amplify the

biases in their training data.

o Problems in the human labels

o Problems in the resources used (like lexicons)

o Problems in model architecture (like what the model is trained to optimized)

• Mitigation of these harms is an open research area

• Meanwhile: model cards

What causes these harms?

74

74

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• For each algorithm you release, document:
o training algorithms and parameters

o training data sources, motivation, and preprocessing

o evaluation data sources, motivation, and preprocessing

o intended use and users

o model performance across different demographic or other groups and environmental

situations

Model Cards

75

(Mitchell et al., 2019)

75

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 5.10 – Evaluating a Sentiment
Classifier

SIT330-770: Natural
Language Processing

76

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

76
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Let's consider just binary text classification tasks

• Imagine you're the CEO of Delicious Pie Company

• You want to know what people are saying about your pies

• So you build a "Delicious Pie" tweet detector

o Positive class: tweets about Delicious Pie Co

o Negative class: all other tweets

Evaluation

77

77

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

The 2-by-2 confusion matrix

78

4.7 • EVALUATION: PRECISION, RECALL, F-MEASURE 11

As it happens, the positive model assigns a higher probability to the sentence:
P(s|pos) > P(s|neg). Note that this is just the likelihood part of the naive Bayes
model; once we multiply in the prior a full naive Bayes model might well make a
different classification decision.

4.7 Evaluation: Precision, Recall, F-measure

To introduce the methods for evaluating text classification, let’s first consider some
simple binary detection tasks. For example, in spam detection, our goal is to label
every text as being in the spam category (“positive”) or not in the spam category
(“negative”). For each item (email document) we therefore need to know whether
our system called it spam or not. We also need to know whether the email is actually
spam or not, i.e. the human-defined labels for each document that we are trying to
match. We will refer to these human labels as the gold labels.gold labels

Or imagine you’re the CEO of the Delicious Pie Company and you need to know
what people are saying about your pies on social media, so you build a system that
detects tweets concerning Delicious Pie. Here the positive class is tweets about
Delicious Pie and the negative class is all other tweets.

In both cases, we need a metric for knowing how well our spam detector (or
pie-tweet-detector) is doing. To evaluate any system for detecting things, we start
by building a confusion matrix like the one shown in Fig. 4.4. A confusion matrixconfusion

matrix
is a table for visualizing how an algorithm performs with respect to the human gold
labels, using two dimensions (system output and gold labels), and each cell labeling
a set of possible outcomes. In the spam detection case, for example, true positives
are documents that are indeed spam (indicated by human-created gold labels) that
our system correctly said were spam. False negatives are documents that are indeed
spam but our system incorrectly labeled as non-spam.

To the bottom right of the table is the equation for accuracy, which asks what
percentage of all the observations (for the spam or pie examples that means all emails
or tweets) our system labeled correctly. Although accuracy might seem a natural
metric, we generally don’t use it for text classification tasks. That’s because accuracy
doesn’t work well when the classes are unbalanced (as indeed they are with spam,
which is a large majority of email, or with tweets, which are mainly not about pie).

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall =
tp

tp+fn

precision =
tp

tp+fp

accuracy =
tp+tn

tp+fp+tn+fn

Figure 4.4 A confusion matrix for visualizing how well a binary classification system per-
forms against gold standard labels.

To make this more explicit, imagine that we looked at a million tweets, and
let’s say that only 100 of them are discussing their love (or hatred) for our pie,

78

3/27/24

14

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Why don't we use accuracy as our metric?

• Imagine we saw 1 million tweets

o 100 of them talked about Delicious Pie Co.

o 999,900 talked about something else

• We could build a dumb classifier that just labels every tweet "not about pie"
o It would get 99.99% accuracy!!! Wow!!!!

o But useless! Doesn't return the comments we are looking for!

o That's why we use precision and recall instead

Evaluation: Accuracy

79

79
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• % of items the system detected (i.e., items the system labeled as positive)

that are in fact positive (according to the human gold labels)

Evaluation: Precision

80

12 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

80

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• % of items actually present in the input that were correctly identified by the

system.

Evaluation: Recall

81

12 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

81

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Our dumb pie-classifier
o Just label nothing as "about pie"

Accuracy=99.99%
 but

Recall = 0
o (it doesn't get any of the 100 Pie tweets)

Precision and recall, unlike accuracy, emphasize true positives:

o finding the things that we are supposed to be looking for.

Why Precision and recall

82

82
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• F measure: a single number that combines P and R:

• We almost always use balanced F1 (i.e., b = 1)

A combined measure: F

83

12 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

12 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

83

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Train on training set, tune on devset, report on testset
o This avoids overfitting (‘tuning to the test set’)

o More conservative estimate of performance

o But paradox: want as much data as possible for training, and as much for dev; how to

split?

Development Test Sets ("Devsets") and Cross-validation

84

Training set Development Test Set Test Set

84

3/27/24

15

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Pool results over splits, Compute pooled dev performance

Cross-validation: multiple splits

85

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: Urgent

Figure 4.6 Separate confusion matrices for the 3 classes from the previous figure, showing the pooled confu-
sion matrix and the microaveraged and macroaveraged precision.

and in general decide what the best model is. Once we come up with what we think
is the best model, we run it on the (hitherto unseen) test set to report its performance.

While the use of a devset avoids overfitting the test set, having a fixed train-
ing set, devset, and test set creates another problem: in order to save lots of data
for training, the test set (or devset) might not be large enough to be representative.
Wouldn’t it be better if we could somehow use all our data for training and still use
all our data for test? We can do this by cross-validation: we randomly choose across-validation
training and test set division of our data, train our classifier, and then compute the
error rate on the test set. Then we repeat with a different randomly selected training
set and test set. We do this sampling process 10 times and average these 10 runs to
get an average error rate. This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on, because we’d be
peeking at the test set, and such cheating would cause us to overestimate the perfor-
mance of our system. However, looking at the corpus to understand what’s going
on is important in designing NLP systems! What to do? For this reason, it is com-
mon to create a fixed training set and test set, then do 10-fold cross-validation inside
the training set, but compute error rate the normal way in the test set, as shown in
Fig. 4.7.

Training Iterations

1

3

4

5

2

6

7

8

9

10

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Training
Training

Training
Training

Training
Training

Training
Training

Training
Training

Training Test
Set

Testing

Figure 4.7 10-fold cross-validation

85
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 5.11 – Evaluation with more than
two classes

SIT330-770: Natural
Language Processing

86

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

86

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Confusion Matrix for 3-class classification

87

4.8 • TEST SETS AND CROSS-VALIDATION 13

Harmonic mean is used because it is a conservative metric; the harmonic mean of
two values is closer to the minimum of the two values than the arithmetic mean is.
Thus it weighs the lower of the two numbers more heavily.

4.7.1 Evaluating with more than two classes
Up to now we have been describing text classification tasks with only two classes.
But lots of classification tasks in language processing have more than two classes.
For sentiment analysis we generally have 3 classes (positive, negative, neutral) and
even more classes are common for tasks like part-of-speech tagging, word sense
disambiguation, semantic role labeling, emotion detection, and so on. Luckily the
naive Bayes algorithm is already a multi-class classification algorithm.

8
5

10
60

urgent normal
gold labels

system
output

recallu =
8

8+5+3

precisionu=
8

8+10+11
50

30 200

spam

urgent

normal

spam 3
recalln = recalls =

precisionn=
60

5+60+50

precisions=
200

3+30+200

60
10+60+30

200
1+50+200

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

But we’ll need to slightly modify our definitions of precision and recall. Con-
sider the sample confusion matrix for a hypothetical 3-way one-of email catego-
rization decision (urgent, normal, spam) shown in Fig. 4.5. The matrix shows, for
example, that the system mistakenly labeled one spam document as urgent, and we
have shown how to compute a distinct precision and recall value for each class. In
order to derive a single metric that tells us how well the system is doing, we can com-
bine these values in two ways. In macroaveraging, we compute the performancemacroaveraging
for each class, and then average over classes. In microaveraging, we collect the de-microaveraging

cisions for all classes into a single confusion matrix, and then compute precision and
recall from that table. Fig. 4.6 shows the confusion matrix for each class separately,
and shows the computation of microaveraged and macroaveraged precision.

As the figure shows, a microaverage is dominated by the more frequent class (in
this case spam), since the counts are pooled. The macroaverage better reflects the
statistics of the smaller classes, and so is more appropriate when performance on all
the classes is equally important.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset

87

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Macroaveraging:

o compute the performance for each class, and then average over classes

• Microaveraging:

o collect decisions for all classes into one confusion matrix

o compute precision and recall from that table.

How to combine P/R from 3 classes to get one metric

88

88
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Macroaveraging and Microaveraging

89

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: Urgent

Figure 4.6 Separate confusion matrices for the 3 classes from the previous figure, showing the pooled confu-
sion matrix and the microaveraged and macroaveraged precision.

and in general decide what the best model is. Once we come up with what we think
is the best model, we run it on the (hitherto unseen) test set to report its performance.

While the use of a devset avoids overfitting the test set, having a fixed train-
ing set, devset, and test set creates another problem: in order to save lots of data
for training, the test set (or devset) might not be large enough to be representative.
Wouldn’t it be better if we could somehow use all our data for training and still use
all our data for test? We can do this by cross-validation: we randomly choose across-validation
training and test set division of our data, train our classifier, and then compute the
error rate on the test set. Then we repeat with a different randomly selected training
set and test set. We do this sampling process 10 times and average these 10 runs to
get an average error rate. This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on, because we’d be
peeking at the test set, and such cheating would cause us to overestimate the perfor-
mance of our system. However, looking at the corpus to understand what’s going
on is important in designing NLP systems! What to do? For this reason, it is com-
mon to create a fixed training set and test set, then do 10-fold cross-validation inside
the training set, but compute error rate the normal way in the test set, as shown in
Fig. 4.7.

Training Iterations

1

3

4

5

2

6

7

8

9

10

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Training
Training

Training
Training

Training
Training

Training
Training

Training
Training

Training Test
Set

Testing

Figure 4.7 10-fold cross-validation

89

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 5.12 – Statistical Significance
Testing

SIT330-770: Natural
Language Processing

90

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

90

3/27/24

16

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Given:

o Classifier A and B

o Metric M: M(A,x) is the performance of A on testset x

o 𝛿(x): the performance difference between A, B on x:

o 𝛿(x) = M (A ,x) – M (B ,x)

o We want to know if 𝛿(x)>0, meaning A is better than B

o 𝛿(x) is called the effect size

o Suppose we look and see that 𝛿(x) is positive. Are we done?

o No! This might be just an accident of this one test set, or circumstance of the experiment. Instead:

How do we know if one classifier is better than another?

91

91
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Consider two hypotheses:

o Null hypothesis: A isn't better than B

o A is better than B

• We want to rule out H0

• We create a random variable X ranging over test sets

• And ask, how likely, if H0 is true, is it that among these test sets we would see the 𝛿(x) we

did see?

• Formalized as the p-value:

Statistical Hypothesis Testing

92

4.9 • STATISTICAL SIGNIFICANCE TESTING 15

4.9 Statistical Significance Testing

In building systems we often need to compare the performance of two systems. How
can we know if the new system we just built is better than our old one? Or better than
the some other system described in the literature? This is the domain of statistical
hypothesis testing, and in this section we introduce tests for statistical significance
for NLP classifiers, drawing especially on the work of Dror et al. (2020) and Berg-
Kirkpatrick et al. (2012).

Suppose we’re comparing the performance of classifiers A and B on a metric M
such as F1, or accuracy. Perhaps we want to know if our logistic regression senti-
ment classifier A (Chapter 5) gets a higher F1 score than our naive Bayes sentiment
classifier B on a particular test set x. Let’s call M(A,x) the score that system A gets
on test set x, and d (x) the performance difference between A and B on x:

d (x) = M(A,x)�M(B,x) (4.19)

We would like to know if d (x) > 0, meaning that our logistic regression classifier
has a higher F1 than our naive Bayes classifier on X . d (x) is called the effect size;effect size
a bigger d means that A seems to be way better than B; a small d means A seems to
be only a little better.

Why don’t we just check if d (x) is positive? Suppose we do, and we find that
the F1 score of A is higher than Bs by .04. Can we be certain that A is better? We
cannot! That’s because A might just be accidentally better than B on this particular x.
We need something more: we want to know if A’s superiority over B is likely to hold
again if we checked another test set x0, or under some other set of circumstances.

In the paradigm of statistical hypothesis testing, we test this by formalizing two
hypotheses.

H0 : d (x) 0
H1 : d (x)> 0 (4.20)

The hypothesis H0, called the null hypothesis, supposes that d (x) is actually nega-null hypothesis

tive or zero, meaning that A is not better than B. We would like to know if we can
confidently rule out this hypothesis, and instead support H1, that A is better.

We do this by creating a random variable X ranging over all test sets. Now we
ask how likely is it, if the null hypothesis H0 was correct, that among these test sets
we would encounter the value of d (x) that we found. We formalize this likelihood
as the p-value: the probability, assuming the null hypothesis H0 is true, of seeingp-value

the d (x) that we saw or one even greater

P(d (X)� d (x)|H0 is true) (4.21)

So in our example, this p-value is the probability that we would see d (x) assuming
A is not better than B. If d (x) is huge (let’s say A has a very respectable F1 of .9
and B has a terrible F1 of only .2 on x), we might be surprised, since that would be
extremely unlikely to occur if H0 were in fact true, and so the p-value would be low
(unlikely to have such a large d if A is in fact not better than B). But if d (x) is very
small, it might be less surprising to us even if H0 were true and A is not really better
than B, and so the p-value would be higher.

A very small p-value means that the difference we observed is very unlikely
under the null hypothesis, and we can reject the null hypothesis. What counts as very

4.9 • STATISTICAL SIGNIFICANCE TESTING 15

4.9 Statistical Significance Testing

In building systems we often need to compare the performance of two systems. How
can we know if the new system we just built is better than our old one? Or better than
the some other system described in the literature? This is the domain of statistical
hypothesis testing, and in this section we introduce tests for statistical significance
for NLP classifiers, drawing especially on the work of Dror et al. (2020) and Berg-
Kirkpatrick et al. (2012).

Suppose we’re comparing the performance of classifiers A and B on a metric M
such as F1, or accuracy. Perhaps we want to know if our logistic regression senti-
ment classifier A (Chapter 5) gets a higher F1 score than our naive Bayes sentiment
classifier B on a particular test set x. Let’s call M(A,x) the score that system A gets
on test set x, and d (x) the performance difference between A and B on x:

d (x) = M(A,x)�M(B,x) (4.19)

We would like to know if d (x) > 0, meaning that our logistic regression classifier
has a higher F1 than our naive Bayes classifier on X . d (x) is called the effect size;effect size
a bigger d means that A seems to be way better than B; a small d means A seems to
be only a little better.

Why don’t we just check if d (x) is positive? Suppose we do, and we find that
the F1 score of A is higher than Bs by .04. Can we be certain that A is better? We
cannot! That’s because A might just be accidentally better than B on this particular x.
We need something more: we want to know if A’s superiority over B is likely to hold
again if we checked another test set x0, or under some other set of circumstances.

In the paradigm of statistical hypothesis testing, we test this by formalizing two
hypotheses.

H0 : d (x) 0
H1 : d (x)> 0 (4.20)

The hypothesis H0, called the null hypothesis, supposes that d (x) is actually nega-null hypothesis

tive or zero, meaning that A is not better than B. We would like to know if we can
confidently rule out this hypothesis, and instead support H1, that A is better.

We do this by creating a random variable X ranging over all test sets. Now we
ask how likely is it, if the null hypothesis H0 was correct, that among these test sets
we would encounter the value of d (x) that we found. We formalize this likelihood
as the p-value: the probability, assuming the null hypothesis H0 is true, of seeingp-value

the d (x) that we saw or one even greater

P(d (X)� d (x)|H0 is true) (4.21)

So in our example, this p-value is the probability that we would see d (x) assuming
A is not better than B. If d (x) is huge (let’s say A has a very respectable F1 of .9
and B has a terrible F1 of only .2 on x), we might be surprised, since that would be
extremely unlikely to occur if H0 were in fact true, and so the p-value would be low
(unlikely to have such a large d if A is in fact not better than B). But if d (x) is very
small, it might be less surprising to us even if H0 were true and A is not really better
than B, and so the p-value would be higher.

A very small p-value means that the difference we observed is very unlikely
under the null hypothesis, and we can reject the null hypothesis. What counts as very

92

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

o In our example, this p-value is the probability that we would see δ(x) assuming H0 (=A is not
better than B).
o If H0 is true but δ(x) is huge, that is surprising! Very low probability!

o A very small p-value means that the difference we observed is very unlikely under the null

hypothesis, and we can reject the null hypothesis
o Very small: .05 or .01

o A result(e.g., “A is better than B”) is statistically significant if the δ we saw has a probability

that is below the threshold and we therefore reject this null hypothesis.

Statistical Hypothesis Testing

93

4.9 • STATISTICAL SIGNIFICANCE TESTING 15

4.9 Statistical Significance Testing

In building systems we often need to compare the performance of two systems. How
can we know if the new system we just built is better than our old one? Or better than
the some other system described in the literature? This is the domain of statistical
hypothesis testing, and in this section we introduce tests for statistical significance
for NLP classifiers, drawing especially on the work of Dror et al. (2020) and Berg-
Kirkpatrick et al. (2012).

Suppose we’re comparing the performance of classifiers A and B on a metric M
such as F1, or accuracy. Perhaps we want to know if our logistic regression senti-
ment classifier A (Chapter 5) gets a higher F1 score than our naive Bayes sentiment
classifier B on a particular test set x. Let’s call M(A,x) the score that system A gets
on test set x, and d (x) the performance difference between A and B on x:

d (x) = M(A,x)�M(B,x) (4.19)

We would like to know if d (x) > 0, meaning that our logistic regression classifier
has a higher F1 than our naive Bayes classifier on X . d (x) is called the effect size;effect size
a bigger d means that A seems to be way better than B; a small d means A seems to
be only a little better.

Why don’t we just check if d (x) is positive? Suppose we do, and we find that
the F1 score of A is higher than Bs by .04. Can we be certain that A is better? We
cannot! That’s because A might just be accidentally better than B on this particular x.
We need something more: we want to know if A’s superiority over B is likely to hold
again if we checked another test set x0, or under some other set of circumstances.

In the paradigm of statistical hypothesis testing, we test this by formalizing two
hypotheses.

H0 : d (x) 0
H1 : d (x)> 0 (4.20)

The hypothesis H0, called the null hypothesis, supposes that d (x) is actually nega-null hypothesis

tive or zero, meaning that A is not better than B. We would like to know if we can
confidently rule out this hypothesis, and instead support H1, that A is better.

We do this by creating a random variable X ranging over all test sets. Now we
ask how likely is it, if the null hypothesis H0 was correct, that among these test sets
we would encounter the value of d (x) that we found. We formalize this likelihood
as the p-value: the probability, assuming the null hypothesis H0 is true, of seeingp-value

the d (x) that we saw or one even greater

P(d (X)� d (x)|H0 is true) (4.21)

So in our example, this p-value is the probability that we would see d (x) assuming
A is not better than B. If d (x) is huge (let’s say A has a very respectable F1 of .9
and B has a terrible F1 of only .2 on x), we might be surprised, since that would be
extremely unlikely to occur if H0 were in fact true, and so the p-value would be low
(unlikely to have such a large d if A is in fact not better than B). But if d (x) is very
small, it might be less surprising to us even if H0 were true and A is not really better
than B, and so the p-value would be higher.

A very small p-value means that the difference we observed is very unlikely
under the null hypothesis, and we can reject the null hypothesis. What counts as very

93

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

o How do we compute this probability?
o In NLP, we don't tend to use parametric tests (like t-tests)

o Instead, we use non-parametric tests based on sampling: artificially creating many versions of

the setup.

o For example, suppose we had created zillions of testsets x'.
o Now we measure the value of 𝛿(x') on each test set

o That gives us a distribution

o Now set a threshold (say .01).

o So if we see that in 99% of the test sets 𝛿(x) > 𝛿(x')

• W e conclude that our original test set delta w as a real delta and not an artifact.

Statistical Hypothesis Testing

94

94
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Two common approaches:
o approximate randomization

o bootstrap test

• Paired tests:

o Comparing two sets of observations in which each observation in one set can be paired

with an observation in another.

o For example, when looking at systems A and B on the same test set, we can compare

the performance of system A and B on each same observation xi

Statistical Hypothesis Testing

95

95

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 5.13 – The Paired Bootstrap Test

SIT330-770: Natural
Language Processing

96

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

96

3/27/24

17

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Can apply to any metric (accuracy, precision, recall, F1, etc).

Bootstrap means to repeatedly draw large numbers of smaller samples with

replacement (called bootstrap samples) from an original larger sample.

Bootstrap test

97

Efron and Tibshirani, 1993

97
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Consider a baby text classification example with a test set x of 10

documents, using accuracy as metric.

• Suppose these are the results of systems A and B on x, with 4 outcomes (A &

B both right, A & B both wrong, A right/B wrong, A wrong/B right):

Bootstrap example

98

4.9 • STATISTICAL SIGNIFICANCE TESTING 17

1 2 3 4 5 6 7 8 9 10 A% B% d ()
x AB A◆◆B AB ��AB A◆◆B ��AB A◆◆B AB ��A◆◆B A◆◆B .70 .50 .20
x(1) A◆◆B AB A◆◆B ��AB ��AB A◆◆B ��AB AB ��A◆◆B AB .60 .60 .00
x(2) A◆◆B AB ��A◆◆B ��AB ��AB AB ��AB A◆◆B AB AB .60 .70 -.10
...
x(b)
Figure 4.8 The paired bootstrap test: Examples of b pseudo test sets x(i) being created
from an initial true test set x. Each pseudo test set is created by sampling n = 10 times with
replacement; thus an individual sample is a single cell, a document with its gold label and
the correct or incorrect performance of classifiers A and B. Of course real test sets don’t have
only 10 examples, and b needs to be large as well.

Now that we have the b test sets, providing a sampling distribution, we can do
statistics on how often A has an accidental advantage. There are various ways to
compute this advantage; here we follow the version laid out in Berg-Kirkpatrick
et al. (2012). Assuming H0 (A isn’t better than B), we would expect that d (X), esti-
mated over many test sets, would be zero; a much higher value would be surprising,
since H0 specifically assumes A isn’t better than B. To measure exactly how surpris-
ing is our observed d (x) we would in other circumstances compute the p-value by
counting over many test sets how often d (x(i)) exceeds the expected zero value by
d (x) or more:

p-value(x) =
bX

i=1

⇣
d (x(i))�d (x)� 0

⌘

However, although it’s generally true that the expected value of d (X) over many test
sets, (again assuming A isn’t better than B) is 0, this isn’t true for the bootstrapped
test sets we created. That’s because we didn’t draw these samples from a distribution
with 0 mean; we happened to create them from the original test set x, which happens
to be biased (by .20) in favor of A. So to measure how surprising is our observed
d (x), we actually compute the p-value by counting over many test sets how often
d (x(i)) exceeds the expected value of d (x) by d (x) or more:

p-value(x) =
bX

i=1

⇣
d (x(i))�d (x)� d (x)

⌘

=
bX

i=1

⇣
d (x(i))� 2d (x)

⌘
(4.22)

So if for example we have 10,000 test sets x(i) and a threshold of .01, and in only
47 of the test sets do we find that d (x(i)) � 2d (x), the resulting p-value of .0047 is
smaller than .01, indicating d (x) is indeed sufficiently surprising, and we can reject
the null hypothesis and conclude A is better than B.

The full algorithm for the bootstrap is shown in Fig. 4.9. It is given a test set x, a
number of samples b, and counts the percentage of the b bootstrap test sets in which
d (x⇤(i))> 2d (x). This percentage then acts as a one-sided empirical p-value

98

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Now we create, many, say, b=10,000 virtual test sets x(i), each of size n = 10.

• To make each x(i), we randomly select a cell from row x, with replacement,

10 times:

Bootstrap example

99

4.9 • STATISTICAL SIGNIFICANCE TESTING 17

1 2 3 4 5 6 7 8 9 10 A% B% d ()
x AB A◆◆B AB ��AB A◆◆B ��AB A◆◆B AB ��A◆◆B A◆◆B .70 .50 .20
x(1) A◆◆B AB A◆◆B ��AB ��AB A◆◆B ��AB AB ��A◆◆B AB .60 .60 .00
x(2) A◆◆B AB ��A◆◆B ��AB ��AB AB ��AB A◆◆B AB AB .60 .70 -.10
...
x(b)
Figure 4.8 The paired bootstrap test: Examples of b pseudo test sets x(i) being created
from an initial true test set x. Each pseudo test set is created by sampling n = 10 times with
replacement; thus an individual sample is a single cell, a document with its gold label and
the correct or incorrect performance of classifiers A and B. Of course real test sets don’t have
only 10 examples, and b needs to be large as well.

Now that we have the b test sets, providing a sampling distribution, we can do
statistics on how often A has an accidental advantage. There are various ways to
compute this advantage; here we follow the version laid out in Berg-Kirkpatrick
et al. (2012). Assuming H0 (A isn’t better than B), we would expect that d (X), esti-
mated over many test sets, would be zero; a much higher value would be surprising,
since H0 specifically assumes A isn’t better than B. To measure exactly how surpris-
ing is our observed d (x) we would in other circumstances compute the p-value by
counting over many test sets how often d (x(i)) exceeds the expected zero value by
d (x) or more:

p-value(x) =
bX

i=1

⇣
d (x(i))�d (x)� 0

⌘

However, although it’s generally true that the expected value of d (X) over many test
sets, (again assuming A isn’t better than B) is 0, this isn’t true for the bootstrapped
test sets we created. That’s because we didn’t draw these samples from a distribution
with 0 mean; we happened to create them from the original test set x, which happens
to be biased (by .20) in favor of A. So to measure how surprising is our observed
d (x), we actually compute the p-value by counting over many test sets how often
d (x(i)) exceeds the expected value of d (x) by d (x) or more:

p-value(x) =
bX

i=1

⇣
d (x(i))�d (x)� d (x)

⌘

=
bX

i=1

⇣
d (x(i))� 2d (x)

⌘
(4.22)

So if for example we have 10,000 test sets x(i) and a threshold of .01, and in only
47 of the test sets do we find that d (x(i)) � 2d (x), the resulting p-value of .0047 is
smaller than .01, indicating d (x) is indeed sufficiently surprising, and we can reject
the null hypothesis and conclude A is better than B.

The full algorithm for the bootstrap is shown in Fig. 4.9. It is given a test set x, a
number of samples b, and counts the percentage of the b bootstrap test sets in which
d (x⇤(i))> 2d (x). This percentage then acts as a one-sided empirical p-value

99

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Now we have a distribution! We can check how often A has an accidental

advantage, to see if the original 𝛿(x) we saw was very common.

• Now assuming H0, that means normally we expect 𝛿(x')=0

• So we just count how many times the 𝛿(x') we found exceeds the expected 0

value by 𝛿(x) or more:

Bootstrap example

100

4.9 • STATISTICAL SIGNIFICANCE TESTING 17

1 2 3 4 5 6 7 8 9 10 A% B% d ()
x AB A◆◆B AB ��AB A◆◆B ��AB A◆◆B AB ��A◆◆B A◆◆B .70 .50 .20
x(1) A◆◆B AB A◆◆B ��AB ��AB A◆◆B ��AB AB ��A◆◆B AB .60 .60 .00
x(2) A◆◆B AB ��A◆◆B ��AB ��AB AB ��AB A◆◆B AB AB .60 .70 -.10
...
x(b)
Figure 4.8 The paired bootstrap test: Examples of b pseudo test sets x(i) being created
from an initial true test set x. Each pseudo test set is created by sampling n = 10 times with
replacement; thus an individual sample is a single cell, a document with its gold label and
the correct or incorrect performance of classifiers A and B. Of course real test sets don’t have
only 10 examples, and b needs to be large as well.

Now that we have the b test sets, providing a sampling distribution, we can do
statistics on how often A has an accidental advantage. There are various ways to
compute this advantage; here we follow the version laid out in Berg-Kirkpatrick
et al. (2012). Assuming H0 (A isn’t better than B), we would expect that d (X), esti-
mated over many test sets, would be zero; a much higher value would be surprising,
since H0 specifically assumes A isn’t better than B. To measure exactly how surpris-
ing is our observed d (x) we would in other circumstances compute the p-value by
counting over many test sets how often d (x(i)) exceeds the expected zero value by
d (x) or more:

p-value(x) =
bX

i=1

⇣
d (x(i))�d (x)� 0

⌘

However, although it’s generally true that the expected value of d (X) over many test
sets, (again assuming A isn’t better than B) is 0, this isn’t true for the bootstrapped
test sets we created. That’s because we didn’t draw these samples from a distribution
with 0 mean; we happened to create them from the original test set x, which happens
to be biased (by .20) in favor of A. So to measure how surprising is our observed
d (x), we actually compute the p-value by counting over many test sets how often
d (x(i)) exceeds the expected value of d (x) by d (x) or more:

p-value(x) =
bX

i=1

⇣
d (x(i))�d (x)� d (x)

⌘

=
bX

i=1

⇣
d (x(i))� 2d (x)

⌘
(4.22)

So if for example we have 10,000 test sets x(i) and a threshold of .01, and in only
47 of the test sets do we find that d (x(i)) � 2d (x), the resulting p-value of .0047 is
smaller than .01, indicating d (x) is indeed sufficiently surprising, and we can reject
the null hypothesis and conclude A is better than B.

The full algorithm for the bootstrap is shown in Fig. 4.9. It is given a test set x, a
number of samples b, and counts the percentage of the b bootstrap test sets in which
d (x⇤(i))> 2d (x). This percentage then acts as a one-sided empirical p-value

100
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Alas, it's slightly more complicated.

• We didn’t draw these samples from a distribution with 0 mean; we created them

from the original test set x, which happens to be biased (by .20) in favor of A.

• So to measure how surprising is our observed δ(x), we actually compute the p-

value by counting how often δ(x') exceeds the expected value of δ(x) by δ(x) or

more:

Bootstrap example

101

4.9 • STATISTICAL SIGNIFICANCE TESTING 17

1 2 3 4 5 6 7 8 9 10 A% B% d ()
x AB A◆◆B AB ��AB A◆◆B ��AB A◆◆B AB ��A◆◆B A◆◆B .70 .50 .20
x(1) A◆◆B AB A◆◆B ��AB ��AB A◆◆B ��AB AB ��A◆◆B AB .60 .60 .00
x(2) A◆◆B AB ��A◆◆B ��AB ��AB AB ��AB A◆◆B AB AB .60 .70 -.10
...
x(b)
Figure 4.8 The paired bootstrap test: Examples of b pseudo test sets x(i) being created
from an initial true test set x. Each pseudo test set is created by sampling n = 10 times with
replacement; thus an individual sample is a single cell, a document with its gold label and
the correct or incorrect performance of classifiers A and B. Of course real test sets don’t have
only 10 examples, and b needs to be large as well.

Now that we have the b test sets, providing a sampling distribution, we can do
statistics on how often A has an accidental advantage. There are various ways to
compute this advantage; here we follow the version laid out in Berg-Kirkpatrick
et al. (2012). Assuming H0 (A isn’t better than B), we would expect that d (X), esti-
mated over many test sets, would be zero; a much higher value would be surprising,
since H0 specifically assumes A isn’t better than B. To measure exactly how surpris-
ing is our observed d (x) we would in other circumstances compute the p-value by
counting over many test sets how often d (x(i)) exceeds the expected zero value by
d (x) or more:

p-value(x) =
bX

i=1

⇣
d (x(i))�d (x)� 0

⌘

However, although it’s generally true that the expected value of d (X) over many test
sets, (again assuming A isn’t better than B) is 0, this isn’t true for the bootstrapped
test sets we created. That’s because we didn’t draw these samples from a distribution
with 0 mean; we happened to create them from the original test set x, which happens
to be biased (by .20) in favor of A. So to measure how surprising is our observed
d (x), we actually compute the p-value by counting over many test sets how often
d (x(i)) exceeds the expected value of d (x) by d (x) or more:

p-value(x) =
bX

i=1

⇣
d (x(i))�d (x)� d (x)

⌘

=
bX

i=1

⇣
d (x(i))� 2d (x)

⌘
(4.22)

So if for example we have 10,000 test sets x(i) and a threshold of .01, and in only
47 of the test sets do we find that d (x(i)) � 2d (x), the resulting p-value of .0047 is
smaller than .01, indicating d (x) is indeed sufficiently surprising, and we can reject
the null hypothesis and conclude A is better than B.

The full algorithm for the bootstrap is shown in Fig. 4.9. It is given a test set x, a
number of samples b, and counts the percentage of the b bootstrap test sets in which
d (x⇤(i))> 2d (x). This percentage then acts as a one-sided empirical p-value

101

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Suppose:

o We have 10,000 test sets x(i) and a threshold of .01

o And in only 47 of the test sets do we find that δ(x(i)) ≥ 2δ(x)

o The resulting p-value is .0047

o This is smaller than .01, indicating δ (x) is indeed sufficiently surprising

o And we reject the null hypothesis and conclude A is better than B.

Bootstrap example

102

102

3/27/24

18

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Paired bootstrap example

103

18 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

function BOOTSTRAP(test set x, num of samples b) returns p-value(x)

Calculate d (x) # how much better does algorithm A do than B on x
s = 0
for i = 1 to b do

for j = 1 to n do # Draw a bootstrap sample x(i) of size n
Select a member of x at random and add it to x(i)

Calculate d (x(i)) # how much better does algorithm A do than B on x(i)

s s + 1 if d (x(i)) > 2d (x)
p-value(x) ⇡ s

b # on what % of the b samples did algorithm A beat expectations?
return p-value(x) # if very few did, our observed d is probably not accidental

Figure 4.9 A version of the paired bootstrap algorithm after Berg-Kirkpatrick et al. (2012).

4.10 Avoiding Harms in Classification

It is important to avoid harms that may result from classifiers, harms that exist both
for naive Bayes classifiers and for the other classification algorithms we introduce
in later chapters.

One class of harms is representational harms (Crawford 2017, Blodgett et al. 2020),representational
harms

harms caused by a system that demeans a social group, for example by perpetuating
negative stereotypes about them. For example Kiritchenko and Mohammad (2018)
examined the performance of 200 sentiment analysis systems on pairs of sentences
that were identical except for containing either a common African American first
name (like Shaniqua) or a common European American first name (like Stephanie),
chosen from the Caliskan et al. (2017) study discussed in Chapter 6. They found
that most systems assigned lower sentiment and more negative emotion to sentences
with African American names, reflecting and perpetuating stereotypes that associate
African Americans with negative emotions (Popp et al., 2003).

In other tasks classifiers may lead to both representational harms and other
harms, such as censorship. For example the important text classification task of
toxicity detection is the task of detecting hate speech, abuse, harassment, or othertoxicity

detection
kinds of toxic language. While the goal of such classifiers is to help reduce soci-
etal harm, toxicity classifiers can themselves cause harms. For example, researchers
have shown that some widely used toxicity classifiers incorrectly flag as being toxic
sentences that are non-toxic but simply mention minority identities like women
(Park et al., 2018), blind people (Hutchinson et al., 2020) or gay people (Dixon
et al., 2018), or simply use linguistic features characteristic of varieties like African-
American Vernacular English (Sap et al. 2019, Davidson et al. 2019). Such false
positive errors, if employed by toxicity detection systems without human oversight,
could lead to the censoring of discourse by or about these groups.

These model problems can be caused by biases or other problems in the training
data; in general, machine learning systems replicate and even amplify the biases in
their training data. But these problems can also be caused by the labels (for exam-
ple caused by biases in the human labelers) by the resources used (like lexicons,
or model components like pretrained embeddings), or even by model architecture
(like what the model is trained to optimized). While the mitigation of these biases
(for example by carefully considering the training data sources) is an important area
of research, we currently don’t have general solutions. For this reason it’s impor-

After Berg-Kirkpatrick et al (2012)

103

